85,547 research outputs found

    A Solution of the Strong CP Problem Transforming the theta-angle to the KM CP-violating Phase

    Get PDF
    It is shown that in the scheme with a rotating fermion mass matrix (i.e. one with a scale-dependent orientation in generation space) suggested earlier for explaining fermion mixing and mass hierarchy, the theta-angle term in the QCD action of topological origin can be eliminated by chiral transformations, while giving still nonzero masses to all quarks. Instead, the effects of such transformations get transmitted by the rotation to the CKM matrix as the KM phase giving, for θ\theta of order unity, a Jarlskog invariant typically of order 10−510^{-5} as experimentally observed. Strong and weak CP violations appear then as just two facets of the same phenomenon.Comment: 14 pages, 2 figure

    New Angle on the Strong CP and Chiral Symmetry Problems from a Rotating Mass Matrix

    Get PDF
    It is shown that when the mass matrix changes in orientation (rotates) in generation space for changing energy scale, then the masses of the lower generations are not given just by its eigenvalues. In particular, these masses need not be zero even when the eigenvalues are zero. In that case, the strong CP problem can be avoided by removing the unwanted θ\theta term by a chiral transformation in no contradiction with the nonvanishing quark masses experimentally observed. Similarly, a rotating mass matrix may shed new light on the problem of chiral symmetry breaking. That the fermion mass matrix may so rotate with scale has been suggested before as a possible explanation for up-down fermion mixing and fermion mass hierarchy, giving results in good agreement with experiment.Comment: 14 page

    A Convex Model for Edge-Histogram Specification with Applications to Edge-preserving Smoothing

    Full text link
    The goal of edge-histogram specification is to find an image whose edge image has a histogram that matches a given edge-histogram as much as possible. Mignotte has proposed a non-convex model for the problem [M. Mignotte. An energy-based model for the image edge-histogram specification problem. IEEE Transactions on Image Processing, 21(1):379--386, 2012]. In his work, edge magnitudes of an input image are first modified by histogram specification to match the given edge-histogram. Then, a non-convex model is minimized to find an output image whose edge-histogram matches the modified edge-histogram. The non-convexity of the model hinders the computations and the inclusion of useful constraints such as the dynamic range constraint. In this paper, instead of considering edge magnitudes, we directly consider the image gradients and propose a convex model based on them. Furthermore, we include additional constraints in our model based on different applications. The convexity of our model allows us to compute the output image efficiently using either Alternating Direction Method of Multipliers or Fast Iterative Shrinkage-Thresholding Algorithm. We consider several applications in edge-preserving smoothing including image abstraction, edge extraction, details exaggeration, and documents scan-through removal. Numerical results are given to illustrate that our method successfully produces decent results efficiently

    Physics of heat pipe rewetting

    Get PDF
    Although several studies have been made to determine the rewetting characteristics of liquid films on heated rods, tubes, and flat plates, no solutions are yet available to describe the rewetting process of a hot plate subjected to a uniform heating. A model is presented to analyze the rewetting process of such plates with and without grooves. Approximate analytical solutions are presented for the prediction of the rewetting velocity and the transient temperature profiles of the plates. It is shown that the present rewetting velocity solution reduces correctly to the existing solution for the rewetting of an initially hot isothermal plate without heating from beneath the plate. Numerical solutions have also been obtained to validate the analytical solutions
    • …
    corecore